Files
jean_app/jean/processamentoIndividual.ipynb
2025-01-23 19:53:48 -03:00

304 lines
20 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: 'dadosNovo.csv'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 7\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mcsv\u001b[39;00m\n\u001b[0;32m----> 7\u001b[0m dados \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdadosNovo.csv\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msep\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m;\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdecimal\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m,\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m#dados.head(5)\u001b[39;00m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py:948\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m 935\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m 936\u001b[0m dialect,\n\u001b[1;32m 937\u001b[0m delimiter,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 944\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[1;32m 945\u001b[0m )\n\u001b[1;32m 946\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m--> 948\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py:611\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 608\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 610\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 611\u001b[0m parser \u001b[38;5;241m=\u001b[39m \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 613\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[1;32m 614\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py:1448\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 1445\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 1447\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1448\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py:1705\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m 1703\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[1;32m 1704\u001b[0m mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1705\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1706\u001b[0m \u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1707\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1708\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1709\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcompression\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1710\u001b[0m \u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmemory_map\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1711\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_text\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1712\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding_errors\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstrict\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1713\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstorage_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1714\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1715\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1716\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/common.py:872\u001b[0m, in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 863\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(\n\u001b[1;32m 864\u001b[0m handle,\n\u001b[1;32m 865\u001b[0m ioargs\u001b[38;5;241m.\u001b[39mmode,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 868\u001b[0m newline\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 869\u001b[0m )\n\u001b[1;32m 870\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 871\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[0;32m--> 872\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 873\u001b[0m handles\u001b[38;5;241m.\u001b[39mappend(handle)\n\u001b[1;32m 875\u001b[0m \u001b[38;5;66;03m# Convert BytesIO or file objects passed with an encoding\u001b[39;00m\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'dadosNovo.csv'"
]
}
],
"source": [
"# Carregando\n",
"#começa tratando os dados e limpa a base\n",
"import pandas as pd\n",
"import numpy as np\n",
"import csv\n",
"\n",
"dados = pd.read_csv('dadosNovos.csv', sep=';', encoding='utf-8', decimal=',')\n",
"#dados.head(5)\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#dados.dtypes\n",
"# selecao do periodo de analise \n",
"\n",
"dados['DATA'] = pd.to_datetime(dados['DATA'], format='%d/%m/%Y')\n",
"\n",
"df_merged =pd.DataFrame()\n",
"\n",
"\n",
"ano = list([2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020])\n",
"\n",
"\n",
"for x in ano:\n",
" selecao = (dados['DATA'] >=str(x)+'/09/01') & (dados['DATA'] <= str(x+1)+'/04/30')\n",
" \n",
" df_filtrado = dados[selecao]\n",
"\n",
"\n",
" df_merged = pd.concat([df_merged, df_filtrado], ignore_index=True) \n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"#inicio da estacao chuvosa \n",
"\n",
"nome_estacao='DIAMANTINA'\n",
" \n",
"inciochuva = df_merged.loc[:,['DATA', nome_estacao] ]\n",
"final_chuva=[]\n",
"\n",
"marcador_inicio=False\n",
"ano_do_incio_chuva=0\n",
"marcador_final=False\n",
"\n",
"somador_ml=0\n",
"somador_ml_final_chuva=0\n",
"\n",
"for index, row in inciochuva.iterrows():\n",
" leitura_chuva= row[nome_estacao] \n",
" \n",
" if leitura_chuva>=0:\n",
" somador_ml= somador_ml+leitura_chuva;\n",
"\n",
" if somador_ml>=10 and not marcador_inicio:\n",
" marcador_inicio=True\n",
" data_incio_chuva= row['DATA'] \n",
" ano_atual= row['DATA'].year\n",
" print ('estacao:', nome_estacao,'INCIO:', data_incio_chuva, 'MM', somador_ml)\n",
" somador_ml=0\n",
" ano_do_incio_chuva= ano_atual\n",
" marcador_final=False\n",
" #print ('estacao:',ano_do_incio_chuva)\n",
"\n",
"final_chuva = inciochuva[::-1] \n",
"print ('ano incio chuva:',ano_do_incio_chuva)\n",
"for index, row in final_chuva.iterrows(): \n",
" leitura_chuva= row[nome_estacao] \n",
" ano_atual= int(row['DATA'].year)\n",
" data_atual= row['DATA'] \n",
" \n",
" if leitura_chuva>=0 and data_atual <= datetime.strptime(str(ano_do_incio_chuva+1)+'-04-30', '%Y-%m-%d') :\n",
" somador_ml_final_chuva = somador_ml_final_chuva +leitura_chuva\n",
"\n",
" if somador_ml_final_chuva>=5 and not marcador_final: \n",
" marcador_final=True \n",
" data_final_chuva= row['DATA'] \n",
" print ('estacao:', nome_estacao,'FINAL:', data_final_chuva, 'MM', somador_ml_final_chuva)\n",
" somador_ml_final_chuva=0\n",
" marcador_inicio=False\n",
" print ('ano final chuva:', ano_do_incio_chuva+1)\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import csv\n",
"from datetime import datetime\n",
"\n",
"with open('iniciofimestacao.csv', 'w') as file:\n",
" cabecalho = ['estacao', 'inicio','final']\n",
" writer = csv.DictWriter(file, fieldnames=cabecalho,delimiter=';')\n",
" writer.writeheader() # Escreve o cabeçalho\n",
"\n",
"\n",
"#inicio da estacao chuvosa \n",
"ano = list([2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020])\n",
"\n",
"#extrair nome coulas e remove a data\n",
"estacao= list(dados.columns)\n",
"estacao.pop(0)\n",
"\n",
"\n",
"\n",
"for xrow in estacao: #percorre a lista das estacoes\n",
"\n",
" for x in ano: # de cada estacao percorre o ano\n",
"\n",
" selecao = (dados['DATA'] >=str(x)+'/09/01') & (dados['DATA'] <= str(x+1)+'/04/30') \n",
" df_filtrado_ano = dados[selecao] \n",
"\n",
" nome_estacao=xrow\n",
" inciochuva = df_filtrado_ano.loc[:,['DATA', nome_estacao] ]\n",
" final_chuva=[]\n",
"\n",
" marcador_inicio=False\n",
" ano_do_incio_chuva=0\n",
" marcador_final=False\n",
"\n",
" somador_ml=0\n",
" somador_ml_final_chuva=0\n",
"\n",
" for index, row in inciochuva.iterrows():\n",
" leitura_chuva= row[nome_estacao] \n",
" \n",
" if leitura_chuva>=0:\n",
" somador_ml= somador_ml+leitura_chuva;\n",
"\n",
" if somador_ml>=10 and not marcador_inicio:\n",
" marcador_inicio=True\n",
" data_incio_chuva= row['DATA'] \n",
" ano_atual= row['DATA'].year\n",
" #print ('estacao:', nome_estacao,'INCIO:', data_incio_chuva, 'MM', somador_ml)\n",
" dtinicio=data_incio_chuva\n",
" somador_ml=0\n",
" ano_do_incio_chuva= ano_atual\n",
" marcador_final=False\n",
" #print ('estacao:',ano_do_incio_chuva)\n",
"\n",
" \n",
" final_chuva = inciochuva[::-1] \n",
" \n",
" for index, row in final_chuva.iterrows(): \n",
" leitura_chuva= row[nome_estacao] \n",
" ano_atual= int(row['DATA'].year)\n",
" data_atual= row['DATA'] \n",
" \n",
" if leitura_chuva>=0 and data_atual <= datetime.strptime(str(ano_do_incio_chuva+1)+'-04-30', '%Y-%m-%d') :\n",
" somador_ml_final_chuva = somador_ml_final_chuva +leitura_chuva\n",
"\n",
" if somador_ml_final_chuva>=5 and not marcador_final: \n",
" marcador_final=True \n",
" data_final_chuva= row['DATA'] \n",
" #print ('estacao:', nome_estacao,'FINAL:', data_final_chuva, 'MM', somador_ml_final_chuva)\n",
" dtfinal = data_final_chuva\n",
" somador_ml_final_chuva=0\n",
" marcador_inicio=False\n",
" #print ('ano final chuva:', ano_do_incio_chuva+1)\n",
" \n",
" #print ('estacao:', nome_estacao,'INCIO:', data_incio_chuva,'FINAL:', data_final_chuva )\n",
" with open('iniciofimestacao.csv', 'a') as file:\n",
" writer = csv.DictWriter(file, fieldnames=cabecalho, delimiter=';') \n",
" writer.writerow({'estacao':nome_estacao, 'inicio':data_incio_chuva,'final':data_final_chuva}) \n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#extrair nome coulas e remove a data\n",
"estacao= list(dados.columns)\n",
"estacao.pop(0)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"with open('final.csv', 'w') as file:\n",
" cabecalho = ['estacao', 'inicio','final', 'qtdias']\n",
" writer = csv.DictWriter(file, fieldnames=cabecalho, delimiter=';')\n",
" writer.writeheader() # Escreve o cabeçalho\n",
"\n",
"marcador_inicio= False\n",
"marcador_final= False\n",
"marcador_primeirodia= False\n",
"leitura_chuva=0\n",
"cont_veranico=0\n",
"data_anterior=''\n",
"data_incio=''\n",
"\n",
"\n",
"for xrow in estacao: #percorre a lista das estacoes\n",
"\n",
" nome_estacao=xrow\n",
" \n",
" novo = dados.loc[:,['DATA', nome_estacao] ]\n",
" novo[nome_estacao] = novo[nome_estacao].astype(float)\n",
"\n",
" for index, row in novo.iterrows():\n",
" leitura_chuva= row[nome_estacao] \n",
" data= row['DATA']\n",
" if (marcador_inicio):\n",
" if leitura_chuva <=0:\n",
" cont_veranico= cont_veranico+1\n",
" else:\n",
" marcador_final= True\n",
" \n",
" if (cont_veranico==1 and marcador_inicio):\n",
" data_incio= data \n",
" if marcador_final:\n",
" if (cont_veranico>=4):\n",
" \n",
" #print ('estacao:', nome_estacao,'INCIO:', data_incio, ' FIM:', data_anterior , ' DIAS:', cont_veranico) \n",
" with open('final.csv', 'a') as file:\n",
" writer = csv.DictWriter(file, fieldnames=cabecalho, delimiter=';') \n",
" writer.writerow({'estacao':nome_estacao, 'inicio':data_incio,'final':data_anterior, 'qtdias':cont_veranico}) \n",
"\n",
"\n",
"\n",
"\n",
" #toda ver que chove mais que 0.5 mm ele reinicia o contador\n",
" if leitura_chuva >0: \n",
" marcador_inicio= True\n",
" cont_veranico= 0\n",
" marcador_final= False\n",
"\n",
" data_anterior= data\n",
" \n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}