{ "cells": [ { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# Carregando\n", "#começa tratando os dados e limpa a base\n", "import pandas as pd\n", "import numpy as np\n", "import csv\n", "\n", "dados = pd.read_csv('BaciaRioDoce_filtro_setembro_abril.csv', sep=';', encoding='utf-8', decimal=',')\n", "#dados.head(5)\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Erro ao converter a coluna 'DATA': name 'dados_df' is not defined\n", "\n", "RangeIndex: 12342 entries, 0 to 12341\n", "Data columns (total 3 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 CODIGO 12342 non-null int64 \n", " 1 DATA 12342 non-null datetime64[ns]\n", " 2 VALOR 12342 non-null object \n", "dtypes: datetime64[ns](1), int64(1), object(1)\n", "memory usage: 289.4+ KB\n", "None\n", " CODIGO DATA VALOR\n", "0 10004 2020-09-01 0\n", "1 10004 2020-09-02 0\n", "2 10004 2020-09-03 0\n", "3 10004 2020-09-04 0\n", "4 10004 2020-09-05 0\n" ] } ], "source": [ "try:\n", " dados['DATA'] = pd.to_datetime(dados['DATA'], format='%Y-%m-%d', errors='coerce')\n", " if dados_df['DATA'].isnull().any():\n", " dados(\"Aviso: Algumas datas foram convertidas para NaT (Not a Time) devido a formatos inválidos.\")\n", "except Exception as e:\n", " print(f\"Erro ao converter a coluna 'DATA': {e}\")\n", "\n", "# Verificar o DataFrame após a conversão\n", "print(dados.info())\n", "print(dados.head())" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 12342 entries, 0 to 12341\n", "Data columns (total 3 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 CODIGO 12342 non-null int64 \n", " 1 DATA 12342 non-null datetime64[ns]\n", " 2 VALOR 12342 non-null float64 \n", "dtypes: datetime64[ns](1), float64(1), int64(1)\n", "memory usage: 289.4 KB\n", "None\n", " CODIGO DATA VALOR\n", "0 10004 2020-09-01 0.0\n", "1 10004 2020-09-02 0.0\n", "2 10004 2020-09-03 0.0\n", "3 10004 2020-09-04 0.0\n", "4 10004 2020-09-05 0.0\n" ] } ], "source": [ "try:\n", " dados['VALOR'] = dados['VALOR'].astype(str) # Garantir que todos os valores são strings\n", " \n", " # Substituir vírgulas por pontos\n", " dados['VALOR'] = dados['VALOR'].str.replace(',', '.', regex=False)\n", " \n", " # Converter a coluna 'VALOR' para float\n", " dados['VALOR'] = pd.to_numeric(dados['VALOR'], errors='coerce')\n", " \n", " # Tratar valores NaN substituindo por 0\n", " dados['VALOR'] = dados['VALOR'].fillna(0)\n", " \n", "except Exception as e:\n", " print(f\"Erro ao converter a coluna 'VALOR': {e}\")\n", "\n", "# Verificar o DataFrame após a conversão\n", "print(dados.info())\n", "print(dados.head())" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }